
Ray Casting on Shared-
Memory Architectures
Memory-Hierarchy Considerations in Volume Rendering
Michael E. Palmer and Brian Totty
Inktomi

Stephen Taylor
Syracuse University

Volume rendering is the process of rendering two-dimen-
sional images from discretized three-dimensional scalar
fields. The data to be rendered consist of space-filling,
discretized values called voxels. Figure 1 shows example
images of volume-rendered regular data, generated by our

implementations on the Silicon Graphics Power Challenge. Manipulation
of the mapping between voxel value and opacity yields views of the inte-
rior muscle and bone structure of this human-body data set.1

Recent work in concurrent volume rendering2–5 has identified two
major factors that affect performance:

• the selection of an effective parallel-partitioning and load-balancing
algorithm, and

• efficient exploitation of the memory hierarchy—that is, minimizing
cache misses at each level of the hierarchy.

This article is a detailed analysis of the memory-hierarchy effects in
shared-memory architectures of one method of volume rendering—ray
casting (see the adjacent sidebar). We studied two parallel-partitioning
and dynamic load-balancing algorithms—one object partition and one
image partition—exploring trade-offs between their memory-hierarchy
performance and the algorithmic optimizations they allow.

Our resulting implementations (along with careful tuning of the ray-
advancement kernel for Silicon Graphics’ R8000) yield extremely high
performance. For a 1-Gbyte female human-body data set, we attain an
average frame rate of 1.0 frame per second, at a resolution of 400 pixels
× 300 pixels, on a 16-processor Silicon Graphics Power Challenge. This
is faster than the literature has previously reported for a data set this large.

20 1063-6552/98/$10.00 © 1998 IEEE IEEE Concurrency

To improve ray-
casting frame rates on
shared-memory archi-
tectures, the authors
explore memory-
hierarchy effects and
their interaction with
parallel partitioning and
load balancing. With
their optimizations, a
16-processor Power
Challenge machine
renders a 1-Gbyte data
set at a frame per
second—faster than
previously reported for a
data set this large.

Visualization

January–March 1998 21

Figure 1. Volume rendering, example output: The ray-casting process, applied to a data set of the male human
body, produced these images.

Many algorithms exist for volume
rendering, including projective meth-
ods,1–3 isosurface extraction,4 shear-
warp factorization,5 and ray tracing
and ray casting.6 This study focuses
on a ray-casting implementation for
the volume rendering of regular Car-
tesian data.

RAY CASTING

In the simplest form of ray casting,

depicted in Figure A, individual rays
originate at the eye point, pass through
a pixel of the display screen, and pro-
ject through a sequence of data ele-
ments, or voxels.

We call the coordinate system of the
three-dimensional data set object space.
In Figure A, this set of coordinate axes
is labeled x, y, and z. The viewer’s
coordinate system is called image space,
and is labeled u (the viewer’s right), v

(the viewer’s up), and n (opposite to
the direction in which the viewer is
looking).

As a ray passes through each voxel,
it accumulates color and opacity, based
on the color and opacity of the voxel
and the length of the ray intersection
with the object.7 When a ray exits the
volume, the display pixel is assigned
the accumulated color of the ray.

A ray’s accumulated opacity value
asymptotically approaches 1 at a rate
that depends on the opacity of the inter-
sected data voxels. A common algorith-
mic optimization known as opacity clip-
ping stops the further advancement of
rays that have become nearly opaque,
often resulting in a two- to four-fold
performance improvement. This opti-
mization is quite dependent on the data
set: it works best on data sets with large
opaque areas, and not at all on entirely
translucent data sets, where rays never
become completely opaque.

LAWS OF COMPOSITION

We have some flexibility in the order
in which we composite an ordered set
of voxels V1 through Vn to generate
the color of a ray. We define the com-
position operator, C, as

rayα,R,G,B
k+1 = C(rayα,R,G,B

k , VαR,G,G
k)

This operator is used to take the ray’s
color (R, G, B) and opacity (α) at step

Issues in volume rendering

Ray

Voxel

v

u
n

Eye
point

Volumetric data

Image plane

y

x
z

v
u

n

Pixel

Figure A. Coordinate systems in volume rendering. (Continued on next page)

22 IEEE Concurrency

We have also extended our methods to a cluster of such
machines. Using eight Silicon Graphics Power Chal-
lenge machines with a total of 64 processors, we attain
average frame rates up to 10 frames per second on a 357-
Mbyte male human-body data set for a sequence of
frames generated by interactive user control.

Partitioning strategies

Volume rendering is replete with parallelism. However,
selecting parallel-partitioning and load-balancing algo-
rithms that assign tasks and data to processors to maxi-
mize load balance while minimizing communication
overhead is nontrivial. This has been the focus of a great
body of research; Thomas W. Crockett6 has put to-
gether an excellent and recent overview. There are two
broad classes of ray-casting partitioning techniques:
image partitioning and object partitioning.

Image-partitioning5,7 methods assign subdomains of
image pixels (for example, lines or rectangles) of the 2D
display screen to processors. To render an image sub-
domain, the processor must access each image pixel and
all the voxels of the data volume along the ray that
pierces the pixel.

Image partitioning has several appealing attributes.

The disposition of a pixel can be solely determined by
the owning processor, without compositing contribu-
tions from other processors. This allows global opacity
clipping (see sidebar). The primary disadvantage of
image partitioning is lack of locality in accessing the 3D
volumetric data set. To cast one ray, a processor might
in general have to access any voxel in the data set. In
shared-memory systems, this lack of locality can result
in cache thrashing; in distributed-memory systems it
can result in large communication volumes. On fine-
grain distributed-memory systems, this cost becomes
prohibitive, and the image partition is not suitable.

An alternate approach, object partitioning, assigns to
processors subdomains of the object space called blocks
(for example, rectangular solid subsets of the data vol-
ume). We use a method similar to the work of Kwan-
Liu Ma and colleagues,8 in which processors cast rays
through each block individually, generating a tile, the
volume-rendered image of a single block. The system
then sorts the tiles globally according to their distance
from the viewpoint and composites them appropriately
to create the final image of the entire data volume. Unlike
Ma,8 we do not use a binary swap among the processors
during compositing. This is largely because we use a
shared-memory system.

k and add to it the effects of the color
and opacity of the kth voxel that it
intersects. The commonly used com-
position operator is associative but not
commutative. That is,

C(C(a, b), c) = C(a, C(b, c))
but, in general,

C(a, b) ≠ C(b, a)
Therefore, we need not composite the
ordered set of voxels strictly in order.
We can composite any contiguous
subset of voxels without regard to
whether neighboring contiguous sub-
sets have yet been completed. We can
then composite the results from these
subsets to generate the results for
larger contiguous subsets, until ulti-
mately the entire set of voxels V1
through Vn has been included.

It is this flexibility in the order of
composition that lets us manipulate
the order of memory accesses to in-
crease memory locality. We will divide
the volume data set into subblocks that
are stored contiguously in memory,
process them one at a time, and then
composite these results.

COHERENCE

Blocking the data set to improve mem-
ory locality exploits a form of coher-
ence.8 Many algorithmic optimizations
to ray casting take advantage of some
form of coherence, for example

• object coherence—objects tend to be
connected, bounded bodies;

• area coherence—the 2D projection
of a 3D body tends to have a con-
nected, bounded range;

• frame coherence—one frame of an
animated sequence is likely to re-
semble the previous frame (for ex-
ample, in the colors assigned to
given pixels or in the costs to ren-
der given units of work); and

• coherence (locality) of memory refer-
ence—a memory reference to a
given location is likely be tempo-
rally close to references to logically
neighboring locations.

References
1. R.A. Drebin, L. Carpenter, and P.

Hanrahan, “Volume Rendering,”
ACM Computer Graphics, Vol. 22, No.
4, pp. 65–74, 1988.

2. L. Westover, “Footprint Evaluation
for Volume Rendering,” ACM Com-

puter Graphics, Vol. 24, No. 4, 1990,
pp. 367–376.

3. J. Wilhelms and A. Van Gelder, “A
Coherent Projection Approach for
Direct Volume Rendering,” ACM
Computer Graphics, Vol. 25, No. 4,
1991, pp. 275–284.

4. W.E. Lorensen and H.E. Cline,
“Marching Cubes: A High Resolu-
tion 3D Surface Construction Algo-
rithm,” ACM Computer Graphics, Vol.
21, No. 4, month, 1988, pp. 163–169.

5. P. Lacroute and M. Levoy, “Fast Vol-
ume Rendering Using a Shear-Warp
Factorization of the Viewing Trans-
formation,” Computer Graphics Proc.,
Ann. Conf. Series, ACM, New York,
1994, pp. 451–458.

6. P. Sabella, “A Rendering Algorithm
for Visualizing 3D Scalar Fields,”
ACM Computer Graphics, Vol. 22, No.
4, 1988, pp. 51–58.

7. J.T. Kajiya and B.P. Von Herzen,
“Ray Tracing Volume Densities,”
ACM Computer Graphics, Vol. 18, No.
3, 1984, pp. 165–174.

8. I.E. Sutherland, R.F. Sproull, and R.A.
Schumacker, “A Characterization of
Ten Hidden-Surface Algorithms,”
Computing Surveys, Vol. 6, No. 1, Mar.
1974, pp. 1–55.

(Continued from previous page)

January–March 1998 23

Object-partitioning schemes have a natural ability to
improve memory system performance. Because blocks
are stored contiguously in memory, processing the set
of voxels within a block before processing other voxels
dramatically increases locality. For properly sized
blocks, orientation-dependent memory system delays
vanish, offering the potential of reliable interactive-
rendering rates.

Because object partitioning renders blocks individu-
ally, however, global opacity clipping is infeasible.
(Intrablock opacity clipping is still possible, but it is not
as effective.) In addition, there is overhead associated
with the algorithm’s compositing phase. This phase is
parallelizable, but it has a cost proportional to the total
area of the projected tiles—roughly the cube root of the
number of blocks.

Exploiting the memory hierarchy

Though efficient memory-hierarchy exploitation has
been identified as important, the problem has not been
completely characterized or solved. In particular, the
dependence of memory-hierarchy performance on view
direction has not been adequately studied. For exam-
ple, in our implementation of a fairly standard image
partition (which yields high performance for many view
directions), memory-hierarchy effects make the fastest
view direction 10 times as fast as the slowest. Given the
current wide use of interactive volume rendering, con-
sistency of performance independent of viewpoint is
particularly important.

We performed our experiments on the Silicon Graph-
ics Power Challenge, a shared-memory multiprocessor
containing up to 18 Mips R8000 CPUs clocked at 90
MHz. The processors communicate via a bus with a peak
bandwidth of 1.28 Gbytes/s to a shared-memory system.
The R8000 has a two-level cache system. The on-chip,
direct-mapped L1 cache consists of 512 blocks of 32
bytes for a total of 16 Kbytes; the off-chip, four-way-
interleaved L2 cache consists of 32,768 blocks of 128
bytes for a total of 4 Mbytes. The cache system’s func-
tions are partitioned by data type: For integer numbers,
the L2 cache serves as a streaming cache for the L1 cache;
for floating-point numbers, L2 serves as a single-level
cache between the processor and memory. We access
our data voxels as 1-byte integer values.

We use three tools to characterize the memory-hier-
archy performance of each ray-casting algorithm:

• First, we isolate the time that can be attributed to the

cache-miss penalty by comparing the ordinary ray-
casting algorithm with a modified algorithm that
accesses a single, fixed voxel. The modified algorithm
eliminates the costs associated with cache misses.

• Second, we use a hardware bus-snooping board to
count actual L2 misses.

• Third, we use a software cache simulator that enables
us to separate the entire miss-penalty time into L1
and L2 portions.

RAY CASTING COST ANALYSIS

In our system, the inner kernel of the ray caster con-
sumes most of the time required to render a frame. It
iteratively advances a ray into the next voxel, reads the
voxel’s value, maps it to an opacity and color, and adds
the opacity and color appropriately to the accumulated
opacity and color of the ray. (Our system does not inter-
polate between voxels.) The read of the voxel’s value is
the single-memory access that causes the majority of all
cache misses during frame generation. In ray casting
through regular data, in general, the generation of a sin-
gle image could require a processor to access any voxel.
The distribution of memory accesses greatly affects per-
formance. The viewpoint from which a set of rays are
cast and the distribution of the data-set voxels in mem-
ory entail a certain distribution of memory accesses; this
in turn entails a certain number of L1 and L2 misses.

We can break down the approximate total time per
frame into the following parts:

total time per frame (viewpoint, number of blocks,
number of rays cast) =

time per intersection (viewpoint, number of blocks)
×

number of intersections (viewpoint, number of rays
cast) +

a × number of blocks +
b × number of rays cast + c

where the time per intersection and number of intersections
refer to the intersections of rays with voxels. The time
on average to intersect a ray with a single voxel can be
separated into

time per intersection (viewpoint, number of blocks)
=

d × L1 misses (viewpoint, number of blocks) +
e × L2 misses (viewpoint, number of blocks) + f

We use a 3D Bresenham algorithm to calculate a ray’s

24 IEEE Concurrency

path. The Bresenham algorithm yields more advance-
ment steps for diagonal rays than for straight rays of the
same length (that is, it causes the number of intersec-
tions to be a function of viewpoint). Thus, we must apply
a division operation to correct for the varying distance
of each step. Nevertheless, this was the fastest of several
ray advancement strategies we implemented, because
we achieved very good software pipelining on the super-
scalar R8000.

In this article, we do not focus on algorithmic opti-
mizations, such as those intended to minimize the num-
ber of intersections. Nor do we explore methods that
exploit forms of coherence to reduce the total number
of rays cast; we cast one ray for each pixel. Instead, we
focus on the trade-off between decreasing the time per
intersection (by increasing locality with data blocking)
and the overhead resulting from increasing the number
of blocks.

The number of ray-voxel intersections in one frame
varies with view direction because of several factors.
These include the data-set extent in each dimension,
effects of diagonal rays in the Bresenham algorithm,
and the portion of the data set currently visible. There-
fore, a useful, normalized measure of ray-casting speed
is the average time per intersection—that is, the aver-
age time to advance a ray one step and intersect it with
a single voxel.

Our research shows that most of this time for the
slowest view directions is attributable to memory-hier-
archy effects. The casting of hundreds of thousands of
rays through hundreds of millions of voxels places
extreme demands on the memory system.

Other researchers3,5 have not found cache-miss penal-
ties to be the algorithm’s main cost component; nor have
they identified this strong directional dependence. We
suspect two reasons for this: First, we systematically
searched the sphere for the worst viewpoint directions—
the variation could be easily overlooked. Second, we

spent considerable effort optimizing our inner loop for
the R8000. This involved using a simple filter (no inter-
polation between voxels) as well as source-code modi-
fications to allow the compiler to generate efficiently
pipelined loops, and it yielded a performance gain of
three or four times. This improvement factor was due to
more efficient instruction scheduling, not to actual re-
ductions in numbers of memory accesses or to signifi-
cant changes in the order of memory accesses. We con-
cluded that the cost of memory accesses is the largest
remaining cost. Philippe Lacroute2 pointed to memory-
hierarchy costs as a primary cost component, but it was
difficult to further improve the locality of the shear-
warp factorization algorithm used in that work.

EXPERIMENTAL RESULTS

We used three data sets in our experiments:

• a data set derived from the Visible Human Female
data set,1 which was produced by freezing a female
cadaver, shaving it into over 5,000 slices, and then
digitally photographing each slice;

• a data set derived from the Visible Human Male data
set,1 produced in a similar manner; and

• a computational fluid dynamics data set, courtesy of
the Laboratory for Computational Science and Engi-
neering at the University of Minnesota, that displays
the vorticity of a simulated turbulent fluid.

Table 1 lists the dimensions of each data set; we stored
each at 1 byte per voxel. Figures 1 and 2 show example
images of the three data sets. The female and male data
sets were produced photographically, so the colors
approximate the actual colors of the bodily tissues rep-
resented.

As a performance-improving heuristic, opacity clip-
ping is useful for the female and male data sets, because
they both contain large opaque objects. However, this
is not the case with the vorticity data set, because it is

Figure 2. Example images from the (a) female and (b) vorticity data sets.

(a)

(b)

January–March 1998 25

largely translucent. In addition, the vorticity data set is
cubical, which is useful for removing effects due to
nonunity aspect ratios when comparing performance
between views from different directions.

Test suite
The test suite for our experiments consists of a sequence
of 132 views of each data set. We intended this suite to
discover the directional dependence of the time per inter-
section and of the two types of cache miss. Figure 3 shows
selected frames from this suite, called axisorbit. The suite
comprises four discrete segments, each consisting of the

Table 1. Sizes of experimental data sets.

DATA SET DIMENSIONS (VOXELS) TOTAL SIZE (MBYTES)

Vorticity 512 × 512 × 512 128
Male 584 × 1,878 × 341 357
Female 840 × 2,595 × 480 1,000

Figure 3. Selected frames from the axisorbit test suite.

Frame 1 Frame 34 Frame 67 Frame 100

Rot. about y Rot. about x Rot. about z Rot. about y,x

Frame 9 Frame 42 Frame 75 Frame 108

Frame 17 Frame 50 Frame 83 Frame 116

Frame 25 Frame 58 Frame 91 Frame 124

Frame 33 Frame 66 Frame 99 Frame 132

26 IEEE Concurrency

rotation of the data set about a different axis. In frames
1 through 33, the data set is rotated 180 degrees about y;
in frames 34 through 66 about x; in frames 67 through
99 about z; and in frames 100 through 132, the data set
is initially rotated 45 degrees about y, and then from 0
to 180 degrees about x. All views are rendered at a reso-
lution of 400 pixels × 300 pixels.

The 3D data sets are linearized in memory by x first,
then y, then z. When the cadaver in the female or male
data sets is standing upright and facing the viewer, the
object space x-direction points to the viewer’s right, the
y-direction points up, and the z-direction is toward the
viewer. This is important to the consideration of cache
effects.

Viewpoint dependence of ray-voxel intersection
time
We conducted all experiments reported in this section
using one processor with opacity clipping turned off.
Figure 4 plots frame number versus time per intersec-
tion for data sets blocked to different degrees, between
1 and n blocks, where n is 1,024 for the female data set,
256 for the male data set, and 128 for the vorticity data
set. For each data set, we chose the maximum number
of blocks n to yield minimum-sized blocks of approxi-
mately 1 Mbyte, a fraction of the size of the 4-Mbyte L2
cache.

Figure 4 establishes the strong dependence of the time
per ray-voxel intersection on view direction. It also shows
that we can control this dependence by blocking. The
time for a single block (shown in red) shows strong direc-
tional dependence for all three data sets. Appropriately
sized blocks reduce this dependence: as the number of
blocks increases, locality increases, and cache hit rates
improve. However, making the blocks smaller past a cer-
tain point yields no benefit, and there is an overhead cost
associated with increasing numbers of blocks.

For the female data set, the optimal number of blocks
(that is, the number that yields the best average frame
time for all view directions) is 512 (light blue, Figure
4a). For the male data set, the optimal number is 128
(purple, Figure 4b), and for the vorticity data set, it is
64 (purple, Figure 4c). These numbers yield block sizes
of 2 Mbytes, 2.8 Mbytes, and 2 Mbytes for the three
data sets, respectively. These sizes fit easily into the 4-
Mbyte L2 cache.

By comparing the ordinary algorithm with one that
completely flushes the cache between blocks, we deter-
mined experimentally that interblock effects are negli-
gible. However, we found that interpixel effects are sig-
nificant, and are not intuitively obvious. Consider a
single large block (red plots in Figure 4). One might
assume that viewing directly down the x-direction (Fig-
ure 3, frame 17) would yield the best cache performance,
and therefore the lowest time per intersection. How-
ever, this is not the case. Instead, a view directly down
the y-axis (Figure 3, frame 50) is better. This is due to
somewhat complex interpixel effects.

Recall that the data set is linearized in memory x first,
then y, then z. As we cast rays, we scan across the display
screen in horizontal rows. The R8000 has an L1 cache
line length of 32 bytes and an L2 cache line length of 128
bytes. When a ray travels directly down the x-axis (Fig-
ure 3, frame 17), it intersects voxels in steps of 1 byte
through memory. It misses in the L1 cache only once in
every 32 ray-voxel intersections; it misses in L2 only once
in every 128 intersections. The first intersection that
misses fetches into L1 the values for the next 31 inter-
sections, and into L2 the values for the next 127 inter-
sections, yielding good cache performance. However,
the next ray uses none of these cached voxels; it starts
one pixel to the right of the last one on the display screen.

In contrast, when a ray is traveling directly down the
y-axis (Figure 3, frame 50), the first ray misses in the

Female data set Male data set Vorticity data set

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6
1.20

1.00

0.80

0.60

0.40

0.20

1 block

8 blocks 1.00

0.80

0.60

0.40

0.20

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

1.20

1.00

0.80

0.60

0.40

0.20

64
blocks

256
blocks

1,024 blocks

512
blocks

Frame number

0 20 40 60 80 120100

Frame number

0 20 40 60 80 120100 0 20 40 60 80 120100

Frame number

1 block

8 blocks

64 blocks

256
blocks

128
blocks
(dark
blue
line)

64
blocks

1 block
8 blocks

32 blocks

128
blocks

(a) (b) (c)

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

Figure 4. Dependence of time per intersection on view direction for the (a) female, (b) male, and (c) vorticity
data sets.

January–March 1998 27

cache at every ray-voxel intersection. It is traveling
through memory in steps equal to the x dimension of the
data set, which is greater than both 32 and 128 bytes for
all three data sets. However, it leaves behind in the cache
an entire x-y plane of voxel values in the L2 cache. The
dimensions of this plane are the entire y dimension of
the data set by the length of a cache line. Because the L1
cache consists of 512 lines of 32 bytes, and the data sets
each have a y dimension of 512 or greater, it is likely that
casting a single ray down the y direction completely
flushes the L1 cache for all three data sets.

However, such a ray does not flush the L2 cache com-
pletely. The next ray (one pixel to the right on the dis-
play screen) is translated from the last ray by one voxel
in the x direction. In the approximation that it travels
straight down the y-axis (not exactly true with perspec-
tive projection), it lies entirely in the same x-y plane of
voxels the last ray fetched, so it does not miss in the L2
cache at all—nor do the next 126 rays. Frame 116 (Fig-
ure 3) is just 45 degrees rotated from frame 50, but it gets
far worse cache performance because rays that are adja-
cent on the screen do not share an x-y plane of voxels.

A ray traveling directly down the z-axis misses in
cache every time, but leaves an x-z plane of voxel values
behind in the L2 cache. In this context, there are two
interesting cases in our test suite. If the next ray cast is
translated from the last ray by one voxel in the x direc-
tion (as in frames 1, 33, 34, 66, 67, and 99), it hits cache
every time. This yields quite good performance—nearly
as good as the best case of frame 50 for the female and
male data sets. However, if the next ray cast is translated
from the last ray by one voxel in y (as in frame 83), it
misses every time. Furthermore, by the time the ray one
row down on the screen (which would intersect the same
x-z plane of voxels) is cast, intervening cache activity has
already flushed the plane from the cache. This is the
worst possible cache performance; every ray misses at
every intersection. However, we could turn the worst-
case performance of frame 83 into the very good per-
formance of frame 1 (nearly the best case for the male
and female data sets) simply by scanning across the dis-
play in columns instead of by rows.

Analysis of the cache behavior for perspective pro-
jection rays traveling in directions not parallel to the
coordinate axes becomes so complex as to require a
cache simulator, which we discuss in a later section.

Experimental fixed-voxel access
To determine how much of the total frame time is due
exclusively to memory-hierarchy effects rather than

other overheads, we modified the ray-casting kernel.
We replaced the access to the currently intersected voxel
with an access to a single, fixed voxel. Of course, this
does not generate proper images of the data set, but we
intended it to eliminate the costs associated with cache
miss penalties. After the first access to this voxel, subse-
quent accesses result in no cache misses. We call the
modified algorithm the no-memory algorithm. Figure 5a
shows the result for a single block for all three data sets.
The original algorithm’s time per intersection, labeled
with-memory, is plotted in red. The time per intersec-
tion of the no-memory algorithm is plotted in green;
this is the time attributed to everything but memory-
hierarchy effects. The blue plot, labeled memory-only, is
the difference between the with-memory and no-mem-
ory lines. This is the time per intersection that we
attribute directly to memory-hierarchy effects.

For a single block, in Figure 5a, the memory-only
time per intersection is the dominant fraction of the
total cost. In addition, it is strongly directionally depen-
dent.

Figure 5b shows results from the same experiment
with the data sets blocked into their optimal number of
blocks. Appropriate blocking provides improved mem-
ory locality, which eliminates many cache misses. This
reduces the memory-only time to slightly below the no-
memory time for all viewpoints. It also reduces the
directional dependence of the memory-only time. Sig-
nificant further performance gains would require algo-
rithmic changes or a faster processor clock; these could
both reduce the no-memory time.

Our next step is to separate the time we attribute to
cache miss penalties into L1 and L2 miss portions.
Then, we’ll compare the total time attributable to cache
misses to the memory-only measured time.

Hardware bus-snooping board
The hardware bus-snooping board passively monitors
the bus, counting various bus events, including L2 cache
misses (L1 misses do not directly generate bus events).
Figure 6a shows hardware measurements of L2 misses
per intersection for the male data set, divided into sev-
eral different numbers of blocks. The maximum number
of misses per intersection (between frames 70 and 96) is
up to 10% higher than 1.0, which means there are slightly
more L2 misses than intersections. This is because the
bus-snooping board records not only misses from accesses
to the data voxels, but also those from all other sources.
Blocking into 128 blocks reduces cache misses, but divi-
sion into 256 blocks does not yield further benefit.

28 IEEE Concurrency

In Figure 6b, for the male data set arranged in one
and 128 blocks, we compare the memory-only time to
the time we can attribute to L2 misses measured by the

bus-snooping board. We derived the latter by multi-
plying the number of L2 misses per intersection by an
L2 miss penalty factor. (The commonly cited L2 miss

penalty factor for the R8000 is 690 ns.)
The figure shows that L2 misses do not
account for all of the memory-only
time. (If they did, the red and green
lines would match, and the blue and
purple lines would match.) Not only is
the bus-snoop L2 time too low, it is too
low by a nonconstant factor: The 690-
ns penalty factor might be low, but that
alone could not account for the differ-
ence. The memory-hierarchy cost not
included here is L1 misses, which we
discuss in the next section.

Cache simulator
We built a source-level software cache
simulator that replaces the memory read
of the current voxel with a call to the
simulator. The call returns the proper
voxel value, with the side effect of updat-

Female data set, 1 block Male data set, 1 block Vorticity data set, 1 block

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

1.20

1.00

0.80

0.60

0.40

0.20

With-memory

Memory
only

Frame number
0 20 40 60 80 120100

Frame number
0 20 40 60 80 120100 0 20 40 60 80 120100

Frame number

No-memory

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

With-memory
Memory only

No-memory

1.20

1.00

0.80

0.60

0.40

0.20 Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

With-memory
Memory only

No-memory

1.20

1.00

0.80

0.60

0.40

0.20

(a)

(b)

Female data set, 512 blocks Male data set, 128 blocks Vorticity data set, 64 blocks

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–9

600

500

400

300

200

100

With-memory

Memory
only

Frame number
0 20 40 60 80 120100

Frame number
0 20 40 60 80 120100 0 20 40 60 80 120100

Frame number

No-memory

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–9

With-memory

Memory only

No-memory

450

400

350

300

250

200

150

100

50

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–9

With-memory

Memory only

No-memory

400

300

200

100

Figure 5. Time per intersection using the with-memory and no-memory algorithms, and memory-only, the
difference between the two, (a) for the three data sets each arranged in a single block and (b) each in its optimal
number of blocks.

Male data set Male data set

M
is

se
s

pe
r i

nt
er

se
ct

io
n

1.00

0.80

0.60

0.40

0.20

1 block

8 blocks

Frame number
0 20 40 60 80 120100

Frame number
0 50 100

64
blocks Se

co
nd

s
pe

r i
nt

er
se

ct
io

n
x

10
–6

Bus snoop
L2 time,
1 block

Memory only,
1 block1.00

0.80

0.60

0.40

0.20

(a) (b)

128
blocks

256
blocks

Bus snoop
L2 time,
128 blocks

Memory only,
128 blocks

Figure 6. Using the hardware bus-snooping board to analyze memory
use: (a) L2 misses per intersection on the male data set; (b) time per
intersection as determined using memory-only and the bus-snooping
board.

January–March 1998 29

ing the simulated caches and counting both L1 and L2
cache misses. We use the simulator to count only accesses
to the data voxels, which cause the vast majority of all
cache misses, ignoring all other memory accesses. We
configured the simulator to mimic the caching policies
and cache sizes of the R8000: a direct-mapped L1 cache
of 32-byte blocks, totaling 16 Kbytes, and a four-way
interleaved L2 cache of 128-byte blocks, totaling 4
Mbytes. We used a random block-replacement policy.

Figure 7 shows the simulated counts of L1 and L2
misses per intersection, for the three data sets, for two
block sizes each. Here, unlike in the bus-snooping results
of Figure 6a, the maximum number of misses per voxel
intersection is 1.0, because the simulation counts only
cache misses due to accesses to the voxels in the data set.

As we predicted, the L2 miss rate for one block (the
blue line) is nearly 1.0 for frames 72 to 94 (when we are
looking down the z-axis and adjacent rays do not share
an x-z plane), for frames 105 to 127 (when we are look-
ing down a skew axis except for frame 116), and for
frame 116 (when we are looking down the y-axis and
adjacent rays do not share an x-y plane). Also as we pre-
dicted, L1 misses for one block (the red line) are low
when we are looking directly down the x-axis (frame 17)
but are otherwise relatively high. L1 performance is
worse for the vorticity data set than for the other data
sets over a wide range of views. This might be because
the cubical-vorticity data set fills more of the screen than
the other two data sets, so that more rays are at skew
angles to the data due to perspective projection.

To analyze more precisely those frames for which we
are not looking directly down one of the data set’s major
axes, we define another set of coordinate axes, shown in
Figure A in the sidebar. Whereas the x, y, and z axes are
fixed to the voxel data set, we define axes u, v, and n as
fixed to the viewer’s frame of reference (or alternatively,
to the display screen). u points to the viewer’s right; v is
the viewer’s up direction; and n is the direction opposite
that in which the viewer is looking. (This makes u, v, n
a right-handed coordinate system.)

When a ray accesses a voxel and an L2 cache hit
occurs, there are two alternative reasons for that cache
line to be already present in the cache:

• It was fetched during a previous voxel intersection
by the same ray. We call this a help-yourself hit.

• It was fetched by a previous ray. We call this a help-
your-neighbor hit.

We can expect help-yourself hits to be most common
when the n-axis approaches the x-axis—when the viewer
is looking directly along x. As n turns gradually away
from x, these hits do not drop off sharply, however.
With the perspective projection, all rays diverge slightly
from n except the one in the exact center of the screen.
As n moves away from x, the number of rays that point
nearly down x and are still visible on the display screen
decreases slowly. Before the point where n becomes per-
pendicular to x, there are no longer any such rays visi-
ble on the screen.

We can expect help-your-neighbor hits to be most
common when the u-axis approaches x—when the 128-
byte cache lines are aligned with our horizontal scan
lines across the screen. In this situation, rays that are
cast near one another in time tend to share cache lines.
(In fact, the cache lines generated by several rows of rays
can be held in the cache at once.)

In Figure 3, throughout frames 34 to 66, u is exactly
aligned with x. In Figure 7, this sequence of frames has
nearly uniform low L2 miss rates; this is due to many
help-your-neighbor hits.

The case of frames 1 to 33 is quite interesting. Frame
1 begins with u aligned with x, so we get many help-
your-neighbor hits. As the data set rotates about y, L2
misses increase. By frame 9, we reach a local maximum
of L2 misses. However, as we move toward frame 17,
where n aligns with x, we begin to get more help-your-
self hits. Frame 17 is a local minimum of L2 misses. As
the data set continues to rotate, we reach another local
maximum of cache misses at frame 25, where x is again
45 degrees between n and u. Miss rates decrease again

Female data set Male data set

M
is

se
s

pe
r i

nt
er

se
ct

io
n

1.00

0.80

0.60

0.40

0.20

L1 miss,
1 block

Frame number
0 50 100

Frame number
0 50 100

M
is

se
s

pe
r i

nt
er

se
ct

io
n

1.00

0.80

0.60

0.40

0.20

Vorticity data set

L1 miss,
512 blocks

L2 miss,
1 block

L2 miss,
512 blocks

L1 miss,
1 block

L1 miss,
128 blocks

L2 miss,
1 block

L2 miss,
128 blocks

M
is

se
s

pe
r i

nt
er

se
ct

io
n

1.00

0.80

0.60

0.40

0.20

L1 miss,
1 block

L1 miss,
64 blocks

L2 miss,
1 block

L2 miss,
64 blocks

Frame number
0 50 100

Figure 7. Simulation of L1 and L2 cache misses per intersection for the three data sets.

30 IEEE Concurrency

as we approach frame 33, which has many help-your-
neighbor hits as u again aligns with x.

In frames 70 through 96, x is aligned with neither n
nor u; we expect few help-yourself or help-your-neigh-
bor hits. This region indeed has the worst cache per-
formance. The case is similar for frames 103 to 129,
except we expect a small number of help-your-neigh-
bor hits as u gets within 45 degrees of x at frame 116;
we observe this effect as a slight reduction in cache
misses near this frame.

Figure 8 validates the simulation results, showing the
close correspondence between L2 misses per intersec-
tion counted by our simulator (green), and those actu-
ally measured by the bus-snooping board (red). The
simulated misses are always an underestimate of actual
misses, because the simulator takes into account only
misses arising from access to the current data-set voxel.
Not only does this neglect misses due to accesses to
other data structures (such as the pixel-accumulation
buffer), it also neglects cache thrashing between the data
voxels and other data structures. We would expect this
error to be greater when L2 miss rates are very high and
the cache begins to thrash more heavily. Indeed, note
that the pair of lines for 128 blocks (Figure 8b) matches
more closely than the pair for one block (Figure 8a).
Our simulator yields a slightly low estimate when there
are large numbers of cache misses.

This comparison tells us also that the memory access
to the current data voxel is the source of the majority of
all L2 misses in the algorithm. We cannot directly val-
idate the simulation of L1 misses, because we cannot
measure them on the R8000. However, we have some
confidence in our simulator because of its success in
matching the complex, irregular features of the mea-
sured L2 misses.

Figure 9 compares the simulation results for two block
sizes against our memory-only time per intersection (red

and blue lines). We derived the simulated
time per intersection (green and purple
lines) from the cache miss counts of Fig-
ure 7. We multiplied the counts per inter-
section of both types of miss by their cor-
responding penalty factor, and then added
them. Commonly cited estimates for L1
and L2 miss penalties are 89 ns and 690 ns.

The resulting simulated time and the
corresponding empirical memory-only
time lines are strikingly similar in shape
for all three data sets and both numbers
of blocks. For the optimal number of

blocks for each data set, the correlation between the blue
and purple lines is extremely close. For one block, the
simulated time is consistently somewhat lower than the
memory-only time, as explained earlier.

USING THE RESULTS

We have now precisely identified and characterized the
main expense in the ray-casting kernel: L1 and L2 cache
miss penalties. We have explained in detail their direc-
tional dependence, and demonstrated that they can be
controlled by appropriate blocking of the data. Cache
miss rates depend primarily on complex interpixel and
intrapixel effects, which in turn depend on the relative
orientations of the u and n axes (in the viewer’s frame
of reference) to the x-axis (in the data set’s frame of ref-
erence). Interblock and interframe cache effects are neg-
ligible, because of the high rates at which the cache is
completely flushed. We next apply these lessons to par-
allelization of the algorithm on the shared-memory
Power Challenge architecture.

Parallel partitioning and load
balance
We examined two combined parallel-partitioning/load-
balancing algorithms suitable for ray casting on shared-
memory architectures. The first, the image-tiled parti-
tion, is a 2D static subdivision of the image into M
regular rectangles, where M is greater than or equal to
N, the number of processors. This algorithm achieves
load balance by dynamic self-scheduling. It places tiles
on a work queue, and idle processors take tiles from the
queue and render the corresponding subrectangle of the
entire image. The algorithm sorts the tiles roughly in
decreasing order of their cost and achieves good load
balance if M is sufficiently large relative to N. We use a
tile’s cost from the last frame as a predictor for its cost

1.00

0.80

0.60

0.40
0.30
0.20
0.10

Male data set, 1 block

0 50 100
Frame number

Bus snoop L2,
1 block

Simulated L2,
1 block

L2
 m

is
se

s
pe

r i
nt

er
se

ct
io

n
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

Male data set, 128 blocks

0 50 100
Frame number

Bus snoop L2,
128 blocks

Simulated L2, 128 blocks

L2
 m

is
se

s
pe

r i
nt

er
se

ct
io

n
x

10
–3

(a) (b)

Figure 8. For the male data set in (a) one and (b) 128 blocks,
simulated L2 misses per intersection and those detected by the bus-
snooping board.

January–March 1998 31

in the current frame, exploiting a graphics concept
known as viewpoint coherence, the tendency for one
viewpoint to be close to the previous one.

The second algorithm, the object-blocked partition,
divides the 3D data set into M regular rectangular solids,
or blocks, with M again larger than N. The algorithm
places these blocks on a work queue similar to that used
in the image-tiled partition, and load balancing is also
similar. Idle processors take an individual block and cast
rays through it to generate a tile, the projected image of
the block. In its second phase, the algorithm sorts the
resulting M tiles in increasing depth order and compos-
ites them to generate the entire image. The overhead
associated with the compositing phase is proportional to
the total area of all tiles. We use an image-partitioning
method to parallelize this phase.

The image-tiled partition can easily accommodate
global opacity clipping, because a single processor com-
pletely determines the disposition of a pixel. In the
object-blocked partition, the value of a pixel depends
on the contributions of many tiles rendered a priori, so
global opacity clipping is infeasible. Intrablock opacity
clipping is still possible, but is less effective. Object par-
titions, however, quite naturally conform to subdivision
of the data into blocks that are stored contiguously in
memory. This provides the memory-hierarchy perfor-
mance gains associated with data locality, which we dis-
cussed earlier. We can expect the image-tiled partition
to have low data-access locality because it treats the data
set as one large block.

THE POWER CHALLENGE SHARED BUS

Multiple processors each sharing the same bus to mem-
ory are capable of saturating the bus. To measure the
maximum total bus bandwidth of the Power Challenge,
we wrote a simple program that causes as many L2 cache
misses as possible. It allocates an array many times the
size of the L2 cache, and then steps through it at a stride

of 128 (missing in L2 each time), reading the values and
adding their sum to an accumulator. We ran between 1
and 16 such processes concurrently, measuring a maxi-
mum bus bandwidth of 1.0 Gbytes/s. (The machine we
used for our experiments had two-way memory inter-
leaving. We also measured the bus bandwidth of an
eight-way interleaved machine, and found a maximum
bandwidth of about 1.1 Gbytes/s.) Our results showed
that more than eight processors making concurrent
memory requests as fast as possible saturate the bus.
Therefore, other parallel programs with poor cache hit
rates might saturate the bus and not exhibit parallel
speedup past nine processors.

EXPERIMENTAL RESULTS

For the object-blocked partition, we determined empir-
ically that for the female, male, and vorticity data sets,
the optimal numbers of blocks were 512, 128, and 64.
These numbers are low enough that compositing over-
head does not begin to dominate, but high enough to
break the data set into blocks smaller than the L2 cache,
and high enough to allow good load balance on 16
processors. (We found that this required at least four
blocks per processor.) We conducted all of the object-
blocked experiments presented here with the optimal
number of blocks for each data set.

For the image-tiled partition, we found that there was
negligible overhead associated with increasing numbers
of tiles, up to at least several thousand. We also found
that we needed at least 32 tiles per processor for good
load balance from a variety of viewpoints. The optimal
number of tiles does not depend on the data set. There-
fore, we conducted all image-tiled experiments, for all
three data sets, with 512 tiles, yielding 32 tiles per pro-
cessor for 16 processors.

Parallel speedup
Figure 10a shows parallel speedup of the image partition

Memory-only,
1 block

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Female data set

0 50 100
Frame number

Memory-only,
1 block

Sim. mem. time,
1 block

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

Male data set

0 50 100
Frame number

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

Memory-only,
512 blocks

Sim. mem. time,
512 blocks

Sim. mem. time,
1 block

Memory-only,
128 blocks

Sim. mem. time,
128 blocks

Memory-only,
1 block

Vorticity data set

0 50 100
Frame number

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Se
co

nd
s

pe
r i

nt
er

se
ct

io
n

x
10

–6

Sim. mem.
time, 1 block

Memory-only,
64 blocks

Sim. mem.
time, 64 blocks

(a) (b) (c)

Figure 9. Simulated and memory-only memory hierarchy time per intersection for the three data sets.

32 IEEE Concurrency

on two through sixteen processors compared to a single
processor. The image partition does not exhibit parallel
speedup past eight processors. The figure shows good
parallel speedup on two and four processors for all view
directions. However, for views with high L2 cache miss
rates, eight processors do not exhibit perfect speedup,
and 16 processors exhibit poor speedup. (These views
include frames 6 to 12, 22 to 28, 69 to 97, and 102 to
130.) The results match those we obtained with our
cache-saturating experiment—that is, the bus becomes
saturated by more than eight processors querying it as
fast as they can.

As shown in Figure 10b, however, the object parti-
tion obtains much better parallel speedup. For all data
sets, the speedup is by a factor of more than 7.5 on eight
processors. On 16 processors, the speedups average 13,
14, and 14.5 for the female, male, and vorticity data sets.
Speedups with opacity clipping turned on are not qual-
itatively different.

Load balance
Figure 11 shows a measurement of the load balance for

the image and object partitions. Our metric of load bal-
ance takes the ratio of the average time for all processors
to complete a frame to the maximum time for any
processor. If the value of this ratio is 1, then the maxi-
mum and average are equal, and the time for all proces-
sors is equal—a perfect load balance. As the ratio de-
creases, the average processor spends more time idle
waiting for the slowest processor to finish. We used a
log scale for these graphs to make small deviations from
ideal load balance visible.

For the image partition, in Figure 11a, load balance
is extremely good across all data sets and all frames. For
all data sets, load balance never falls below .94, and is
almost always above .99. The image partition’s lack of
parallel speedup past eight processors, then, is not due
to poor load balance—all processors slow down equally.
This accords with our explanation that poor cache hit
rates are responsible for the lack of speedup on 16
processors.

For the object partition, Figure 11b, the load balance
metric is generally above .95. Only during frames 50
and 116 for the male and female data sets is the load bal-

14

12

10

8

6

4

2

Female data set, image partition,
512 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

14

12

10

8

6

4

2

Male data set, image partition,
512 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

14

12

10

8

6

4

2

Vorticity data set, image partition,
512 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

14

12

10

8

6

4

2

Female data set,object partition,
512 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

14

12

10

8

6

4

2

Male data set, object partition,
128 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

14

12

10

8

6

4

2

Vorticity data set, object partition,
64 tiles, clip off

0 50 100
Frame number

2 processors

4 processors

Sp
ee

du
p

16 processors

8 processors

(a)

(b)

Figure 10. Parallel speedup for multiple processors rendering the three data sets: (a) using the image partition
algorithm with opacity clipping off and (b) using the object partition algorithm with clipping off.

January–March 1998 33

ance slightly worsened. In both of these cases, the feet
of the cadaver swing quickly past the viewer. This causes
rapid changes in the rendering costs for the blocks in
the feet of the cadaver: At one moment they are off the
screen, and have no cost; at the next moment they take
up a large part of the screen, and have a very high cost.
Because we use costs from the previous frame to esti-
mate the cost of the current frame, this rapid change can
cause some blocks to be sorted out of order in terms of
their true cost, causing load imbalance. Note that the
vorticity data set does not show this worsening of load
balance at these frames; because the data set is cubical in
shape, one “end” of the data set does not sweep partic-
ularly close to the viewer at these frames, so the rapid
change in costs does not occur.

Comparison of partitioning methods
The image partition is inferior to the object partition as
both a serial and a parallel algorithm. On a single proces-
sor it simply obtains worse cache performance; on more
than eight processors, it saturates the bus and is unable
to produce further parallel speedup. However, the image

partition does have one advantage over the object par-
tition—it allows global opacity clipping to be effective.
The efficacy of this optimization is data-set-dependent,
but it can be significant. (The object partition can only
apply opacity clipping by the block, which is much less
effective.)

Figure 12 compares four variations of the algorithm
on eight processors: the image partition with clipping
on (red) and clipping off (green); and the object partition
with clipping on (blue), and clipping off (purple). The
image partition with clipping on is slightly superior to
the object partition for the male and female data sets for
many of the frames with low L2 miss rates (frames 1 to
61). Both data sets contain a large opaque object, and
these algorithmic performance gains outweigh the other
factors. However, for frames with worse L2 miss rates,
the object partition is superior. Furthermore, on the
largely translucent vorticity data set, opacity clipping is
less effective. On this data set, the object partition is
much superior to the image partition for all views except
where L2 miss rates are lowest (frames 42 to 58)—even
there, it is slightly superior. Furthermore, the object

Lo
ad

 b
al

an
ce

Lo
ad

 b
al

an
ce

le+00

9.9

9.8

9.7

Female data set, image partition,
512 tiles, clip off

0 50 100
Frame number

Lo
ad

 b
al

an
ce

Male data set, image partition,
512 tiles, clip off

0 50 100
Frame number

le+00

9.9

9.8

9.7

9.6

9.5

9.4

Vorticity data set, image partition,
512 tiles, clip off

0 50 100
Frame number

Female data set,object partition,
512 blocks, clip off

0 50 100
Frame number

le+00

9.5

9.0

8.8

8.6

8.4

8.2

8.0

Male data set, object partition,
128 blocks, clip off

0 50 100
Frame number

Vorticity data set, object partition,
64 blocks, clip off

0 50 100
Frame number

2 processors

4 processors

8 processors

16 processors

le+00

9.9

Lo
ad

 b
al

an
ce

Lo
ad

 b
al

an
ce

Lo
ad

 b
al

an
ce

le+00

9.8

9.6

9.4

9.2

9.0

le+00

9.8

9.6

9.4

9.2

(a)

(b)

Figure 11. Load balance on multiple processors for (a) image partition and (b) object partition clipping off for
both algorithms.

34 IEEE Concurrency

partition with clipping off is actually faster than the
object partition with clipping on; rays become opaque
within a single small block so rarely that it is cheaper
not to bother testing for them at all.

To further champion the object partition, Figure 12b
compares the same four variations with 16 processors.
On 16 processors, the image partition does not run
much faster than on eight, but the object partition con-
tinues to speed up. For the female and male data sets on
16 processors, the object partition with clipping on is
fastest for most views. For the vorticity data set, the
object partition with clipping off is again the fastest for
nearly all views.

Maximum frame rates
Taking the best partition for each data set in Figure 12b,

we calculated the average frame rate across all view-
points for each data set. For the 1-Gbyte female data
set, using the object partition with opacity clipping, on
16 processors at a resolution of 400 × 300 pixels, we get
an average of 1.0 frame per second. This is faster than
has been previously cited in the literature for a data set
this large. Furthermore, our test suite was designed to
include the most expensive view directions in the aver-
age. For the 357-Mbyte male data set, using the same
partition, we get an average of 1.9 frames per second.
For the 128-Mbyte (5123) vorticity data set, using the
object partition without opacity clipping, we get an aver-
age of 2.9 frames per second.

We have also extended our methods to a cluster of
such machines, replicating the data set on each (admit-
tedly not a scalable solution, but fast). Using eight Power

Figure 12. Time per frame of four variations of the algorithm rendering the three data sets, running on (a) eight
processors and (b) 16 processors.

10.0

8.00

6.00

4.00

2.00

Se
co

nd
s

Se
co

nd
s

12

10

8

6

4

2

Female data set,
8 processors

0 50 100
Frame number

Se
co

nd
s

Male data set,
8 processors

0 50 100
Frame number

Vorticity data set,
8 processors

0 50 100
Frame number

Female data set,
16 processors

0 50 100
Frame number

Male data set,
16 processors

0 50 100
Frame number

Vorticity data set,
16 processors

0 50 100
Frame number

Image, 512 tiles,
clip on

Image, 512 tiles,
clip off

Object,
512 blocks,
clip on

Object,
512 blocks,
clip off

Se
co

nd
s

Se
co

nd
s

Se
co

nd
s

(a)

(b)

7.00

6.00

5.00

4.00

3.00

2.00

1.00

3.60

3.20

2.80

2.40

2.00

1.60

1.20

.80

.40

.00

6.00

5.00

4.00

3.00

2.00

1.00

3.20

2.80

2.40

2.00

1.60

1.20

.80

.40

.00

Object,
128 blocks,
clip on

Object,
128 blocks,
clip off

Object,
64 blocks,
clip on

Object,
64 blocks,
clip off

Image, 512 tiles,
clip on

Image,
512 tiles,
clip on

Image, 512 tiles,
clip off

Image,
512 tiles,
clip off

January–March 1998 35

Challenge machines with a total of 64 processors, we
attain rates up to 10 frames per second on the 357-
Mbyte male data set.

Ray casting contains coherence which can
be exploited to increase memory locality.
The associativity of the composition oper-
ator allows us to manipulate the order of
memory accesses to increase cache per-

formance, specifically by dividing the data set into
appropriately sized blocks. The experimental results in
this article and the analytical models they support pro-
vide a useful framework to analyze the parallel mem-
ory-hierarchy performance of other problems that also
contain such coherence. As we have shown for ray cast-
ing, good parallel speedup for such problems also relies
on the careful optimization of memory-hierarchy per-
formance by exploiting coherence to increase memory
locality.

ACKNOWLEDGMENTS
We thank the Advanced Systems Division of Silicon Graphics Com-
puter Systems and the National Center for Supercomputing Appli-
cations at the University of Illinois, Urbana-Champaign, for their
generous provision of compute cycles. Thanks also to H. Ross Har-
vey of Avalon Computer Systems. Thanks as well to Paul Woodward
of the Laboratory for Computational Science and Engineering, Uni-
versity of Minnesota (woodward@lcse.umn.edu) for the vorticity data
set. This research was sponsored by the Defense Advanced Research
Projects Agency under contract number DABT63-95-C-0116, and
Aasert award number N0014-93-1-0843.

REFERENCES
1. The Visible Human Male and Female data sets, Visible Human

Project, c/o Michael J. Ackerman, Nat’l Library of Medicine,
http://www.nlm.nih.gov/research/visible/visible_human.
html.

2. P. Lacroute, “Real-Time Volume Rendering on Shared Memory
Multiprocessors Using the Shear-Warp Factorization,” Proc. Par-
allel Rendering Symp., ACM, New York, 1995, pp. 15–22.

3. J.P. Singh, A. Gupta, and M. Levoy, “Parallel Visualization Algo-
rithms: Performance and Architectural Implications,” Computer,
Vol. 27, No. 7, July 1994, pp. 44–55.

4. P. Mackerras and B. Corrie, “Exploiting Data Coherence to
Improve Parallel Volume Rendering,” IEEE Parallel and Dis-
tributed Technology, Vol. 2, No. 2, Summer, 1994, pp. 8–16.

5. J. Nieh and M. Levoy, “Volume Rendering on Scalable Shared-
Memory MIMD Architectures,” Proc. ACM Siggraph Workshop
on Volume Visualization, ACM, 1992, pp. 17–24.

6. T.W. Crockett, “Parallel Rendering,” Encyclopedia of Computer
Science and Technology, Vol. 43, No. 19, Marcel Dekker, New
York, 1996, pp. 335–371; ftp://ftp.icase.edu/pub/techreports/
95/95-31.pdf.z.

7. M. Levoy, “Design for a Real-Time High-Quality Volume Ren-
dering Workstation,” Proc. Chapel Hill Workshop on Volume Visu-
alization, ed. C. Upson, Dept. Computer Science, Univ. of North
Carolina, 1989, pp. 85–92.

8. K. Ma et al., “A Data Distributed, Parallel Algorithm for Ray-
Traced Volume Rendering,” Proc. Parallel Rendering Symp.,
ACM, 1993, pp. 15–22.

Michael E. Palmer is a senior engineer in research and development
at Inktomi Corporation in San Mateo, California. His research inter-
ests include the application of parallel and distributed hardware and
algorithms to large problems requiring interactive performance, such
as volume rendering and text retrieval. He received his BS in Physics
from Yale University, and his PhD in Computer Science from the
California Institute of Technology. Direct questions to him via e-mail
at mep@inktomi.com.

Brian Totty is the director of engineering at Inktomi Corporation.
He has directed the research and development of Inktomi’s networked,
parallel applications since February 1996. Previously, he was a paral-
lel systems scientist with Silicon Graphics, in Mountain View, Cali-
fornia. Totty holds a BS in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology. He also holds
MS and PhD degrees in computer science from the University of Illi-
nois at Urbana-Champaign, where he received an IBM graduate fel-
lowship and a Darpa fellowship in parallel processing. His e-mail
address is bri@inktomi.com.

Stephen Taylor is an associate professor in the Computer Science
Department at Syracuse University. His research interests include
concurrent computing and multispectral image analysis. He received
his PhD from the Department of Applied Mathematics at the Weiz-
mann Institute of Science, Israel. Reach him via e-mail at steve@
scp.syr.edu.

